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Abstract
Recent progress in the numerical study of various strongly correlated electronic
systems is reviewed. The study of transport in single molecule conductors and
quantum dots is addressed with a recently proposed adaptive time-dependent
density-matrix-renormalization group (DMRG). Experiments involving non-
local spin control and their numerical simulation are also discussed. A section
is devoted to recent efforts in the study of spin-fermion models for colossal
magnetoresistive manganites, where we present insights on the effect of disorder
and electron–phonon coupling. Finally, using a dynamical mean field approach,
we review calculations in the area of diluted magnetic semiconductors that
provides guidelines on how the Curie temperature could be increased in these
itinerant ferromagnetic systems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In several materials of technological interest the interactions between the electrons are
collective, and these systems, referred to as strongly correlated electronic systems, display a
broad range of interesting and important phenomena.

One example is the study of electron transport through single-molecule conductors and
quantum dots. These nanostructures are not only candidates for novel potential applications,
such as molecular electronics and quantum computing, but also provide well-controlled and
tunable systems for studying interesting many-body effects. In this paper, we review recent
results in this area, including the Coulomb blockade and Kondo effects in section 2.
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Another example is the colossal magnetoresistive (CMR) effect in manganites. In recent
years, much progress has been made in this context after the realization that several competing
states, with quite different properties, are very close in energy in these compounds. As a
consequence, small variations in carrier density, temperature, pressure, magnetic fields, and
other variables often lead to giant responses. Moreover, the effect of quenched disorder
appears to be important in understanding the colossal magnetoresistive effect, according to
recent investigations that we review in section 3. This combination of strong correlation and
disorder effects, and the simultaneous relevance of several degrees of freedom such as spin,
charge, orbital, and lattice, lead to a plethora of unusual properties, with tremendous potential
for applications.

In addition, we have included in this paper recent studies on diluted magnetic
semiconductors (DMSs), which are semiconductors where a small fraction of its atoms
are magnetic. These materials are very promising for future applications in the area of
spintronics. There are many formal similarities in the theoretical treatment of diluted magnetic
semiconductors and the transition metal oxides mentioned above, justifying the inclusion of
the former in this paper. Both classes of material present complex ground states, and this
complexity leads to possible functionalities. Moreover, both systems require a careful treatment
of electron interactions at the computational and theoretical level.

We will review recent results on these various correlated electron systems as studied with
state-of-the-art computational techniques. For quantum dots, fundamental Hubbard models
are considered. However, for CMR manganites and DMS materials more appropriate spin-
fermion models have been developed that, even though they could still be considered only as
phenomenological models, include all the relevant interactions at a microscopic level. These
models have been accurately studied using Monte Carlo algorithms combined with exact
diagonalization of the fermionic sector. We will also discuss future directions of research in
each of these areas.

2. Recent studies of quantum dots and molecular conductors with computational
techniques

2.1. Introduction

The rapidly developing investigations in the area of nanometre-scale systems and their con-
comitant potential technological applications in real devices have induced considerable interest
in the study of electron transport through single molecule conductors (MCs) and quantum dots
(QDs). Due to the small size of these systems, Coulomb correlations are important. In addition,
particularly in the case of single MCs, the electron–phonon coupling is also important, since
molecules can change their shape and position relative to the leads as electrons enter or leave
the system. This also has interesting effects on transport and other properties.

An important manifestation of electron correlations in nanostructures is the Coulomb
blockade effect. The addition of an electron to a nanodevice is penalized by the Coulomb
repulsion. Thus, the conductance is suppressed except for charge degeneracy points, where
states with N and N + 1 electrons are degenerate, allowing for charge fluctuations. As a
result, the conductance versus gate voltage curves present periodically spaced conductance
peaks separated by low conductance valleys. This effect has been studied theoretically [1] and
observed experimentally in both QDs [2] and single MCs [3, 4].

Another very interesting many-body effect is the Kondo effect. When an odd number
of electrons occupy the device, conduction electrons in the leads screen their combined local
magnetic moment. An overall singlet is formed. The antiferromagnetic correlations between
the localized and conduction electrons lead to the formation of a resonance in the local
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density of states of the device. This resonance, the Kondo resonance, provides a channel
for electron transport. The energy scale of this effect is defined as the Kondo temperature
TK. Electron transport through the Kondo resonance was predicted theoretically [5–7], and
has been observed experimentally in lithographic quantum dots [8], single molecules [3, 4, 9],
carbon nanotubes [10], and other nanostructures.

More elaborate systems that show competitions between different correlation effects or
more exotic Kondo effects have been studied. In the case of coupled QDs, the Kondo
correlations between each dot and its neighbouring lead compete with the antiferromagnetic
correlations between the two dots [11–13]. Ferromagnetic correlations have been predicted
for coupled double-level QDs in the quarter-filling regime [14]. Integer-spin Kondo effect
has been observed in multilevel QDs where the TK is enhanced at the singlet–triplet degeneracy
points [15]. Orbital Kondo effect, in addition to spin Kondo effect, has been observed in carbon
nanotube based QDs. The conduction electrons in the leads screen both the orbital and spin
degrees of freedom of the QD. When orbital and spin degeneracies are present simultaneously,
a strongly enhanced Kondo effect obeying the SU(4) symmetry is observed [16]. In addition to
electronic correlation effects, vibrational effects in single MCs have received much theoretical
attention [17–19] and have been observed in different experiments [20, 21].

2.2. DMRG method to study conductances

For a conceptual understanding of these complex systems, it is imperative to develop models
and unbiased many-body methods that rely on a minimal number of assumptions in order to
accurately handle both strong Coulombic and electron–phonon couplings. Several numerical
techniques are being used to study electron transport in nanostructures (see [22] and references
therein). The minimal model to describe QDs and single MCs is the one-level Anderson
impurity model. This model can be written as H = HD + Hleads + HD−leads, where HD,
the Hamiltonian of the QD (or molecule), is given by HD = Vgnd + Und↑nd↓. The first term
represents the location of the energy level of the QD controlled by the gate voltage Vg. The
second term represents the Hubbard repulsion between electrons of opposite spins occupying
the QD. nd = nd↑ + nd↓ is the number of electrons at the dot. Hleads is the Hamiltonian of the
leads, modelled, in the results shown below, as ideal tight-binding chains. HD−leads connects
the dot to the leads. It can be written as HD−leads = −t ′ ∑

σ [c†
lσ dσ + c†

rσ dσ + h.c.], where t ′ is
the amplitude for the electronic hopping between the QD and the leads. d†

σ creates an electron
with spin σ at the dot while c†

lσ (c†
rσ ) creates an electron with spin σ at the last (first) site of the

left (right) lead, if sites are numbered form left to right.
As an example of a powerful numerical technique used to study this type of system,

we focus briefly on a recently proposed adaptive time-dependent DMRG-based technique to
study nanotransport [22] (see also [23]). This technique has the advantages of being accurate,
flexible enough to treat a wide spectrum of problems, and independent of any linear response
assumptions. Thus, is can be used to study both equilibrium and non-equilibrium problems.

Figure 1 outlines the basic steps of the technique. In figure 1(a), a schematic representation
of the geometry used is shown. The system in general consists of a relatively small interacting
region connected to two leads. The leads are modelled by tight-binding Hamiltonians. The
ground state at time zero is calculated at zero bias. Then, a finite bias �V is applied between
the two leads and the wavefunction is evolved in time. The resulting current J is measured
as a function of time. The current typically shows a fast increase from zero followed by
a steady-state plateau. The value of the current at the steady state is used to calculate the
conductance. Figures 1(b) and (c) show the exact results for J (t)/�V (in units of e2/h) versus
time (in units of h̄/tleads where tleads is the hopping parameter in the leads) for the case of non-
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Figure 1. Adaptive time-dependent DMRG technique to study nanotransport. (a) Schematic
representation of the geometry used. The leads are modelled by tight-binding Hamiltonians. The
ground state at time zero is calculated at zero bias. Then, a finite bias �V is applied between the
two leads and the resulting current is measured. (b) Exact results for J (t)/�V (in units of e2/h)
versus time (in units of h̄/tleads) for a cluster of length L = 402. J (t)/�V shows clear steady-
state plateaus at ±2e2/h. The periodic changes in the current direction are caused by its reflection
at the open boundaries of the cluster. (b) J (t)/�V obtained with decreasing L . The steady-state
plateau is obtained even with L = 32. The current is quasiperiodic with a period proportional to L
(from [22]).

interacting electrons and one quantum dot, obtained with clusters of different lengths (L) and
�V = 0.001. Figure 1(b) shows J (t)/�V obtained with a large cluster (L = 401). J (t)/�V
presents clear steady-state plateaus at ±2e2/h. The large-scale periodic changes in the current
direction are caused by its reflection at the open boundaries of the cluster. Figure 1(c) shows
J (t)/�V obtained with decreasing L. The steady-state plateau is obtained even with L = 32.
The current is quasiperiodic with a period proportional to L.

Figure 2 shows the conductance G versus Vg for the 1QD case obtained using the procedure
described above. Figure 2(a) shows G deduced from the behavior of the current obtained with
the DMRG method for a single ‘non-interacting’ QD, namely, one having U = 0. It is expected
that the maximum value of G will be obtained when the level in the dot is aligned with the
Fermi level of the leads, and this occurs in our case at Vg = 0. The DMRG results confirm this
expectation. As Vg changes away from 0, G is expected to decrease symmetrically, and this is
indeed shown in figure 2(a). In fact, the results at non-zero gate voltage are also in excellent
quantitative agreement with the exact results. Figure 2(b) shows the results obtained for an
intermediate value of U , namely U = 1. These results are compared with the conductance
obtained using the Friedel sum rule (FSR), G = 2e2

h sin2( π
2 〈nd 〉). The shape of the curve is

the expected one for the regime considered here: the intermediate value of U does not locate
our investigations deep in the Kondo regime, with sharply defined integer charge at the dot, but
more into the so-called mixed-valence region. This can be deduced from the value of the dot
charge versus Vg, shown in figure 2(c). With increasing U and/or decreasing t ′, sharper charge
steps are formed, but the Kondo cloud size increases, thus requiring larger clusters to be used.

2.3. Non-local spin control

As an example of more elaborate nanosystems, we discuss briefly the results of recent important
experiments involving non-local spin control [25]. We also discuss our numerical results
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(b) (c)

(a)

Figure 2. Adaptive time-dependent DMRG results in the case of one QD. (a) DMRG and exact
results for G versus Vg in the case of one non-interacting QD. The DMRG results are obtained
with L = 64 and number of states M = 300. G is obtained from the value of the steady-state
current plateau. The exact results are for infinite leads. The plots show a resonant tunnelling peak
with a full width at half maximum (FWHM) equal to 4t ′2 at Vg = 0. (b) G for one interacting
QD. Circles show G obtained by averaging the current over an interval of time corresponding to
the steady state. Squares show G obtained from 〈nd 〉 using the Friedel sum rule (FSR). G has the
shape of the expected Kondo or mixed-valence plateau centred at Vg = −U/2. This feature would
become sharper by increasing U and/or decreasing t ′. The results shown here were obtained using
U = 1.0, t ′ = 0.4, L = 128, and M = 300. (c) The dot occupation 〈nd 〉 for the same parameters
(from [22]).

(a)

(b)

Figure 3. (a) Experimental setup used in the non-local spin control experiments. The system
consists of two QDs (labelled QD1 and QD2) coupled through an open conducting central region
(CR). The arrow indicates the direction in which bias is applied and conductance is measured. (b)
Illustration of the model used in our numerical study. An Anderson impurity model is used to
describe QD1 and QD2. QD2 is coupled to CR through the hopping parameter t ′′. Note that QD2
is side coupled to the direction in which the conductance is measured, thus a Fano antiresonance is
quite natural in this system (from [24]).

simulating those experiments [24]. The experimental setup is shown in figure 3(a). The system
consists of two similar QDs (labelled QD1 and QD2) coupled through an open conducting
central region (CR). A finite bias is applied to QD1 as well as to the CR, while QD2 is kept at
a constant gate potential. The differential conductance of QD1 is then measured for different
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charge states of QD2 and different values of its coupling to the CR. The main result was the
suppression and splitting of the Kondo peak in QD1 by changing the occupancy of QD2 from
an even to an odd number of electrons and by increasing its coupling to the CR. A Ruderman–
Kittel–Kasuya–Yosida (RKKY) interaction between the QDs was suggested as an explanation
for the observed effects. Figure 3(b) shows the model used to simulate the experiment. The
Anderson impurity Hamiltonian is used for both QDs. The calculations were carried out using
the exact diagonalization plus Dyson equation technique [26]. Our numerical results nicely
reproduced the experimental results. The system was also analysed using a simple circuit
model, where the system is treated as a circuit of a serial QD (QD1) and a side-coupled QD
(QD2) connected in series. The results of this simple analysis also reproduced the experimental
results. The main conclusion of the numerical study was the following. The effects observed
experimentally can also be explained as a result of the destructive interference of the two paths
that an electron can take: a direct path through CR and QD1, and an indirect path through
CR, QD2, CR and QD1. This so-called Fano antiresonance is quite natural in systems with
side-coupled QDs.

2.4. Molecular conductors

As mentioned above, in the case of single MCs, in addition to the Coulomb interactions,
the electron–phonon coupling is also important and can have interesting effects on transport
properties. Let us discuss briefly the conductance of a molecule with centre of mass
motion [17]. This system was studied numerically using the exact diagonalization plus Dyson
equation technique. The molecule is allowed to oscillate between the two leads. It is clear that
the molecule–leads tunnel barriers depend on the molecule displacement from its equilibrium
position. The molecule is modelled using the Anderson–Holstein model. The Hamiltonian that
connects the molecule to the leads can be written as HM−leads = t ′[1−α(a +a†)] ∑

σ (d†
σ cl0σ +

h.c.) + t ′[1 + α(a + a†)] ∑
σ (d†

σ cr0σ + h.c.). In this model, d†
σ creates an electron with

spin σ in the molecule, t ′ is the hopping parameter between the molecule and the leads,
and α is a parameter that carries the dependence of t ′ on the molecule displacement from
its equilibrium position x̂ (note the opposite signs in this dependence for the two leads, caused
by the molecules’ centre of mass oscillations). This displacement can be written in terms of
the phononic operators as x̂ = (a + a†). The main result observed was the presence of a
conductance dip at Vg = −U/2, for both the interacting and non-interacting electronic cases.
In the following, we present an explanation of the conductance dip. The reasoning starts by
noting that HM−leads can be rewritten as a sum of two channels contributing to the overall
molecule–leads connection. The first term, t ′α(a+a†)

∑
σ (d†

σ cr0σ −d†
σ cl0σ +h.c.), represents

a phonon-assisted tunnelling channel, i.e. the electron absorbs (emits) a phonon upon entering
the molecule and, then, emits (absorbs) a phonon upon leaving. The two channels were studied
separately by keeping only the relevant term in ĤM−leads. The conductance and the phase carried
by each channel were calculated. It was found that, for Vg = −U/2, the conductance of each
of the channels is 2e2/h and the phase difference is π , leading to a perfect cancellation in the
overall conductance. This interference effect is independent of the electron–electron interaction
and, thus, the cancellation should still be present for U = 0, as obtained numerically.

These systems provide a unique well-controlled and tunable playground, both for testing
many-body theories and exploring new and exotic many-body effects. Some of these effects
are very difficult or even impossible to realize in bulk system. In parallel with the huge
experimental advances, reliable many-body, particularly numerical, techniques are essential
to understand these increasingly interesting systems. This is an area of research with a bright
future and surely with many interesting surprises waiting to be discovered.
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3. Theoretical progress in colossal magnetoresistance

3.1. Introduction

An important open problem in the area of transition metal oxides is the explanation of
the colossal magnetoresistance (CMR) effect that appears in the Mn oxides that are widely
referred to as manganites. These compounds present a rich phase diagram with a variety of
competing states which are stabilized by changing the carrier concentration using a standard
chemical doping process involving ions with different valences, or by varying the carrier
bandwidth via isovalent doping. Among the low-temperature ground states in manganites
there appears a ferromagnetic (FM) metallic phase and several antiferromagnetic/charge/orbital
ordered insulating states. For the compounds with intermediate or small Curie temperatures,
the experimentally obtained resistivity versus temperature curves present a sharp peak, which
occurs precisely at the transition toward ferromagnetism. In the vicinity of this peak, the CMR
effect is observed, which consists of enormous changes in the resistivity upon the introduction
of relatively small magnetic fields. Technological applications of CMR compounds in the
magnetic recording industry will still need a substantial increase of the currently available
critical temperatures where the large magneto effects occur. However, the physics behind this
remarkable CMR phenomenon defines a challenging basic-science problem that has attracted
the attention of the condensed matter community.

The explanation of the CMR effect is one of the most important goals of theoretical
investigations in the manganite context. It has been shown that the standard double exchange
(DE) model was not sufficient to understand these materials [27]. In fact, a DE model
cannot even produce an insulator at high temperatures, in the realistic regimes of electronic
densities [28], and this pointed toward the importance of other couplings, such as electron–
phonon, for a proper description of these compounds. Progress was later made with the
realization that manganite models have tendencies toward mixed phase regimes, typically
involving metallic and insulating states in coexistence [29, 30]. This discovery was possible
only after the DE model and its close variations were studied with unbiased computational
methods beyond mean-field approximations. Inhomogeneous states with a variety of length
scales appear frequently in these studies and powerful computational tools are clearly needed
to fully understand CMR materials [31]. The theoretical discovery of phase separation
tendencies [32] was followed by an enormous experimental effort that confirmed the relevance
of mixed states in most of the CMR compounds (for a review see [33]). Percolative pictures
were envisioned to understand these materials. Model calculations by Mayr et al [34] and
Burgy et al [35, 36], using simplified spin systems and random resistor networks, revealed
a phenomenology very similar to that of real CMR materials in the regime of couplings and
electronic densities where metallic and insulating states were in competition.

This initial effort using simple models was followed by calculations of resistivities in the
more realistic, although still simplified, one-orbital model for manganites. Verges et al [37]
numerically showed that an insulator can appear at intermediate and large temperatures if the
electron–phonon coupling λ is large enough. In this model, the two tendencies in competition
at low temperatures are both ferromagnetic, and they only differ in the character of the charge
distribution (uniform versus localized). The results considering only FM phases (metallic and
insulating) cannot solve the entire CMR issue, since often the competition in experiments is
between a ferromagnet against an antiferromagnetic/charge/orbital ordered state. However,
those results are sufficiently interesting and challenging that they will be reviewed in detail
here following closely [38]. Moreover, they could be of relevance to important Mn oxides such
as La0.7Ca0.3MnO3, which at least naively seem well separated from charge ordered states in
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the phase diagrams. Recently, Kumar and Majumdar [39, 40] observed that the clean limit
results of [37] are much enhanced by including on-site quenched disorder, together with a
robust electron–phonon coupling.

Here we will review recent important progress related to the CMR problem. We will
show that by increasing the electron–phonon coupling three regions are observed. First, for
small electron–phonon coupling the system is metallic. As the electron–phonon coupling is
increased past a critical value, a region in parameter space is found where the system has a
metal insulator transition at finite temperature. If the electron–phonon coupling is too large the
system becomes insulating for all temperatures. Even though the previous scenario is correct,
the Hamiltonian parameters have to be tuned carefully to obtain a ‘critical’ region with a metal
insulator transition at finite temperature. We show that the critical region is much enhanced
when quenched disorder is added.

3.2. Model and methods

The Hamiltonian for the one-orbital model is

H1b = −t
∑

〈i j〉,α
(c†

i,αc j,α + h.c.) − JH

∑

i,α,β

c†
i,α �σα,βci,β · �Si

− λt
∑

i,γ,α

(ui,−γ − ui,γ )c†
i,αci,α + t

∑

i,γ

(ui,γ )2

+
∑

i,α

(�i − μ)ni,α, (1)

where c†
i,α creates an electron at site i with spin α, σα,β are the Pauli spin matrices, 〈i j〉 indicates

summing over nearest-neighbour sites, and t is the nearest-neighbour hopping amplitude for the
movement of electrons (t also sets the energy unit, i.e. t = 1 in all of the results below). The
first and second terms are the standard for a double exchange model, with �Si being a classical
localized spin that represents the t2g degrees of freedom. The third term in the Hamiltonian
accounts for the energy corresponding to the lattice–carrier interaction, with λ being the
strength of the electron–phonon coupling. ui,γ are the distortions (lattice displacements) of the
oxygen atoms surrounding a Mn ion at site i . The index γ in three dimensions (two dimensions)
runs over three (two) directions x, y and z (x and y). The tendency toward increasing the
magnitude of the lattice distortions is balanced by the fourth term in the Hamiltonian, which
represents the stiffness of the Mn–O bonds. Since the study of quantum phonons in this context
is not possible with currently available algorithms, the oxygen displacements are considered
classical, an approximation widely used in studies of manganites [33]. Finally, the last term
corresponds to the quenched disorder, which here it is introduced in the form of random site
energies. �i represents the strength of the disorder at a given site, and these numbers are
chosen from a bimodal distribution of width 2� with mean 0. The overall electronic density n
is controlled with the help of a chemical potential μ added to the last term in the Hamiltonian.

For manganites, JH is known to be large, and to simplify our study we consider the limit of
JH → ∞, which has been shown to preserve the essential physics of manganites [33]. In this
limit, the spin of the eg-electron perfectly aligns along the localized t2g-spin direction. For an
infinite Hund coupling, the system is particle–hole symmetric with respect to density n = 0.5.
Thus, results at densities n and 1 − n are equivalent.

This Hamiltonian is solved using the standard exact diagonalization of the quadratic
fermionic sector for a given spin background [33, 30]. The procedure, then, consists of
integrating the t2g spins (assumed to be classical) by means of a Monte Carlo algorithm. Details
have been widely discussed in previous studies and they will not be repeated here [33, 30].
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Figure 4. Monte Carlo results obtained using a 4×4×4 lattice. Shown are the resistivity and spin–
spin correlations, the latter at the maximum allowed distance (2

√
3), versus temperature, working at

λ = 0.9, n = 0.3, and for the disorder strengths � indicated. The results shown are mainly for one
configuration of quenched disorder, but as many as ten configurations were used in particular cases
of temperatures and �, and no substantial deviations were observed between disorder configurations
(from [38]).

The resistivity ρ has been calculated by taking the inverse of the mean conductivity σ ,
where the latter is related to the conductance G by G = σ Ld−2, with d being the dimension
and L the linear size of the lattice. The calculation of the conductance G has been carried out
following the approach extensively discussed before by Verges [41]. The use of the resistivity
notation is to facilitate the interpretation of results and comparison with experiments, namely
we do not claim to have observed ohmic behavior in our small system simulations. The units
used for the resistivity are [h/e2] in two dimensions, and [h/e2] × L in three dimensions. To
restore the proper units to our results, the real lattice spacing of Mn oxides must be used.

3.3. Resistivity

The discussion of our computational results starts at the electronic density n = 0.3 (equivalent
to n = 0.7, due to symmetry). Figure 4 is a typical example of the resistivity curves. Shown
are both the spin–spin correlation at the maximum distance possible in the cluster under study
and the resistivity, working at a fixed electron–phonon coupling λ = 0.9, and varying the
strength of the quenched disorder �. In the clean limit, � = 0, there is a rapid change
in resistivity near the transition to ferromagnetism. This is a typical pure double-exchange
behavior: in the absence of a sufficiently strong λ, quenched disorder, or other couplings
that may lead to competing states, then a metal is obtained at temperatures above the Curie
temperature. As already clearly established in this field, pure double-exchange models are
not enough to address the physics of the CMR materials. However, note the dramatic effect
of quenched disorder on the resistivity, as shown in figure 4. Disorder can induce a peak in
the resistivity that much resembles experimental results for typical CMR materials. Even for
the small systems studied here, the ratio of resistivities between its maximum and minimum
values is as large as ∼6 for � = 0.7. Note the correlation between the peak location and the
temperature where ferromagnetic order appears (signalled in our calculations by the value of
the spin–spin correlation at the largest possible distance in the cluster under investigation).
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Figure 5. Influence of the electron–phonon coupling λ on the resistivity curves in the clean limit
� = 0, considering a 4 × 4 × 4 lattice, and n = 0.3 (from [38]).

Although a variety of previous theoretical and experimental investigations have
convincingly shown the importance of quenched disorder in the CMR context, nevertheless
it is interesting to observe that a resistivity peak can also be found by varying λ even in the
clean limit � = 0, as shown in figure 5. There seems to exist a qualitative relation between
increasing � at small λ and simply increasing λ at � = 0. However, there is an important
difference between the two cases: observing the resistivity peak in the clean limit requires a
fine tuning of λ. For a non-zero �, the range of couplings with a resistivity peak is much
wider (see below in the n = 0.1 subsection for a more detailed discussion). Fine tuning is not
compatible with the CMR effect since the phenomenon appears in a large number of manganese
oxides, with a distribution of λ. For a discussion on the increase in the resistivity at very low
temperature in figure 5 see [38].

The resistivity curves with peaks at intermediate temperatures (figures 4 and 5) resemble
the experimental data corresponding to real manganites. Even if only qualitatively, the
similarity of the Monte Carlo data in figures 4 and 5 with experimental observations is excellent.

3.4. Magnetoresistance

The study would not be complete without the investigation of the effect of a magnetic field. We
will show that when a magnetic field is included, samples that present a peak in the resistivity
also present a large magnetoresistance effect. In this subsection, n = 0.1 will be considered (as
already noted, n = 0.9 is the same, via symmetry considerations for the model used). Several
of the effects discussed at the realistic density n = 0.3 in the previous section were found to
be magnified by reducing the electronic density. Moreover, the lattice to be shown is now two
dimensional, to illustrate the similarity systematically found between results in two and three
dimensions.

The effect of magnetic fields at n = 0.1 is very pronounced (see figure 6), resembling the
magnitude of the CMR effect in real materials. The region in the vicinity of the resistivity peak
is the most affected. The magnetoresistance ratios are as large as those reported in the real
Mn oxides with the largest CMR effects. The trade-off is that the effect occurs only in a small
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Figure 6. (a) Influence of magnetic fields on the resistivity curve and on the spin–spin correlation
at the maximum allowed distance (4

√
2) on an 8 × 8 lattice, in the clean limit � = 0. (b)

Magnetoresistance ratios versus temperature, calculated for two representative magnetic fields. In
both (a) and (b), λ = 1.5 and n = 0.1 (adapted from [38]).

window of λ, but this range, as well as the magnetoresistance value, can be further enlarged by
adding quenched disorder.

The research effort discussed in previous publications by our group and others, and
reviewed in this section, reached several goals. First, it confirmed the existence of a large
peak in the resistivity versus temperature for the one-orbital model for manganites, including a
robust electron–phonon coupling. This confirmation was obtained using unbiased techniques to
estimate transport properties, and also with a Monte Carlo method that considers the complete
Fermi sector without approximations. Second, a comprehensive analysis of the influence of
couplings, quenched disorder strength, and electronic density was obtained. Although the
last word has not still been said about the CMR phenomenon, considerable progress in its
theoretical study has been reached in recent years. In particular, it is clear that the competition
of two phases is crucial to have a colossal magnetoresistance.

4. Diluted magnetic semiconductors: a dynamical mean-field study of a two-band model

4.1. Introduction

Dynamical mean-field theory (DMFT) of strongly correlated electron systems replaces the
full lattice of atoms and electrons with a single impurity atom imagined to exist in a bath
of electrons [42, 43]. While the theory maps the lattice model onto an impurity model, hence
simplifying the spatial dependence of correlations among electrons, it still accounts fully for
the their temporal dynamics, that is, for the local quantum fluctuations which are missing in an
usual mean-field treatment [44]. Besides its conceptual value of providing a quantum analogue
of the classical mean-field approach, the DMFT mapping of the lattice model onto an impurity
model has important implications in approaching several complicated strongly correlated
electron systems. Among such systems, the diluted magnetic semiconductors (DMSs), which
are materials in which a small fraction x (≈1–10%) of non-magnetic elements is replaced
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by magnetic impurities, attracted a substantial attention in the last decade due to their
potential application in spintronic devices with new functionalities [45, 46]. Technologically, a
semiconductor doped with magnetic atoms, usually Mn, which combines both semiconductor
properties and magnetism, was shown experimentally to exhibit ferromagnetic transition
temperatures that led to expectations that such materials could be extensively applied in
spintronics. Due to significant improvements in molecular beam epitaxy (MBE) techniques,
a ferromagnetic transition temperature (TC) of about 170 K has been recently recorded
experimentally in Mn-doped GaAs [47]. In addition to its potential technological applications,
the ferromagnetism of Ga1−x MnxAs is a fundamental condensed matter problem as it represent
a challenge to theory due to the combined presence of correlations and quenched disorder.
The Mn dopants in GaAs serve the dual role of magnetic impurities that produce the local
magnetic moments and of acceptors producing basically one hole per Mn atom. In turn, the
density of charged carriers is itself a fraction (∼10%) of the Mn concentration due to the strong
localization at As antisite defects [48].

4.2. Study of two bands

Using dynamical mean-field theory (DMFT), in previous publications to be reviewed here we
have studied the ferromagnetic transition temperature (Tc) of a two-band model for diluted
magnetic semiconductors (DMSs), varying the coupling constants, hopping parameters, and
carrier densities. The DMFT treatment discussed here follows closely the results of [49]. We
found that TC is optimized at all fillings p when both impurity bands (IBs) fully overlap in
the same energy range, namely when the exchange couplings, as well as the bandwidths,
are identical. The optimal TC is found to be about twice as large as the maximum value
obtained in the one-band model, showing the importance of multiband descriptions of DMSs
at intermediate couplings. Within DMFT, pioneering calculations for two-band models based
on double-exchange Hamiltonians already exist [50]. However, those calculations focused on
special cases, while the present DMFT effort is more general, with two s = 1/2 bands and
arbitrary couplings, hoppings, and carrier densities. One of our main results is that TC can
be substantially raised by considering multiband systems since at intermediate couplings the
maximal TC at carrier filling p ∼= x is approximately twice as large as the highest TC obtained
in the single-band model at filling p ∼= x/2. The qualitative reason is that the IBs cooperate to
raise TC for values of the chemical potential μ where these bands partially or fully overlap [49].

It is known that in Mn-doped GaAs, the Mn ions substitute for Ga cations and contribute
itinerant holes to the valence band. The Mn ions are in the Mn2+ state and have a half-filled d
shell which acts as a S = 5/2 local moment. Since the valence band of GaAs is p-like, a strong
spin–orbit (SO) coupling between the angular momentum l = 1 of the p orbital and the hole
spin degree of freedom s = 1/2 produces low- and high-energy bands with angular momentum
j = 1/2 and 3/2, respectively. A robust SO split between these bands (�SO ≈ 340 meV)
causes the holes to populate the j = 3/2 state, which itself is split by the crystal field into an
m j = ±3/2 band with heavy holes and an m j = ±1/2 band with light holes. Such a strong
�SO induces an anisotropic carrier-mediated interaction among the Mn ions that produces
frustration in their ferromagnetic order [51], therefore reducing TC. While theoretical models
might consider realistic effective masses for holes (mh ≈ 0.5me and ml ≈ 0.07me with a ratio
r = ml/mh ≈ 0.14; me is the electron mass), studies have shown that TC is maximized when
giving similar masses to both heavy and light sectors [50]. The difference in band masses may
induce magnetic frustration as the kinetic energy K̂ = ∑

k ĉ†
k,αεk,αβ ĉk,β is only diagonalized

when the angular momentum is quantized along the momentum direction [52]. Otherwise, with
an arbitrary quantization direction at r = 1 the magnetic frustration is absent. This argument
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may serve as an explanation for the recorded high values of TC up to 250 K [53], since in delta-
doped GaAs the reduction of the magnetic frustration might be associated with the restriction
of Mn ions in two-dimensional planes, such a restriction allowing for the orientation of the Mn
moments perpendicular to the plane.

Within DMFT, the weak-coupling quadratic dependence of TC with the exchange J
is properly captured by using a one-band model for DMSs [54]. However, the predicted
TC versus J dependence at large J is almost a flat plateau, a result that has in turn been
contradicted by the Monte Carlo (MC) simulations of finite clusters that correctly handle
the random Mn distribution. While for J comparable with the hopping t both techniques
reach similar conclusions, at large J the MC techniques show the decay of TC due to carrier
localization [55, 56].

With two active bands that basically define its ferromagnetism, the Mn-doped GaAs
becomes a subject of particular interest since the consideration of several active bands in
real DMS materials beyond mean-field approximations is essential in understanding the
ferromagnetism of DMSs and the occurrence of TC close to room temperature [57, 58].
To account for both active bands, we introduced a simple two-band model based on the
Hamiltonian:

H = −
∑

ll′ ,〈i j〉α
tll′ (c

†
l′ , jαcl,iα + H.c.) − 2

∑

l,I

JH,lSI · sl,I , (2)

where l, l ′ (=1, 2) are the band indices (not to be confused with angular momentum), i, j label
nearest-neighbour sites, cl,iα creates a hole at site i in the band l, sl,i = c†

l,iα(σαβ/2) cl,iβ is
the spin-operator of the mobile hole (σ̂ = Pauli vector), α and β are spin indices, JH,l is the
Hund coupling between the core spin and the electrons of band l, and SI is the spin of the
localized Mn ion at randomly selected sites I , assumed here classical (Si = Smi , where mi

is a randomly orientated unit vector). While for l = l ′ we refer to tll as the direct-orbital
hopping (≡tl), for l = l ′ the off-diagonal hopping tll′ is referred to as the interorbital hopping
(tll′ = t∗

l′l) [59]. The two active bands couple when the carriers from both bands simultaneously
scatter the same core spin and when the bands exchange carriers via the off-diagonal hopping.
While the first coupling clearly causes an increase in TC when the bands overlap within the
same energy interval, namely when JH,l are closed, the exchange effect is expecting to produce
its further boost [59].

4.3. Results

The DMFT technique applied to the Hamiltonian, equation (2), allows us to obtain the
interacting density of states (DOS) and an implicit equation for TC. The TC is then extracted
from the structure of Matsubara frequencies numerically. For more details see [49]. The
solutions of the DMFT equations for the interacting DOS depend crucially on the ratio Jl/Wl .
The critical value for the formation of well-defined IBs6, corresponding to carrier spins locally
parallel to Mn spins, is Jl/Wl ∼ 0.33. In our study, the domain Jl/Wl < 0.33 is referred
usually to as ‘weak coupling’, while 0.33 < ∼Jl/Wl < ∼0.5 is the ‘intermediate coupling’.
The most interesting physics is observed at the boundary between these two regimes, i.e. when
the IBs are not completely separated from the valence bands.

In figure 7, we show TC versus p, for different ratios J2/J1 and at fixed W2/W1 = 1 and
J1/W1 = 0.5, a situation corresponding to the existence of a well-defined l = 1 IB (although

6 The term ‘impurity band’ is widely used in the DMS literature (see e.g. [61, 62]), although it should not be confused
with the same term used in non-magnetic doped semiconductor literature. Perhaps ‘exchange split valence band’ could
be a better terminology.
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Figure 7. TC versus the carrier concentration p, at various J2/J1. Here, x = 0.05, W1/W2 = 1, and
J1/W1 = 0.5. The inset shows the corresponding low-temperature interacting DOS (from [49]).
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Figure 8. TC versus p at different ratios W2/W1, fixing J1 = J2 = 2. Here x = 0.05 (from [49]).

p � x in real DMSs, the case p > x is also studied for completeness, as done in [54]). The
inset shows the total interacting DOS evolution. The IBs overlap if |J2/W2 − J1/W1| < 0.5.
If the IBs do not overlap, then each one determines TC separately, causing the double-peak
structure observed for some J2/J1 ratios. The band with the largest Jl/Wl is filled first, for
smaller μ. At all p, we found that TC is maximum when J2/J1 = 1, namely when the IBs fully
overlap. Once the bands decouple, the value for TC matches one-band model results.

Let us consider now how changes in bandwidths influence TC. In figure 8, we show
TC versus p for different W2/W1, at fixed J1/W1 = 0.5 (intermediate coupling), and with
J2/J1 = 1.7 At small W2/W1 the second IB will be located in a region of ω smaller (i.e. farther
from the valence bands) than the energy interval occupied by the l = 1 IB. Hence, the l = 2
IB will be the first to be filled. Decreasing J2/W2, the second band moves to the right on the
ω axis, towards the location of the first band. While the bands are still separated, each gives its

7 The relative position of the bands is fixed by shifting the l = 2 valence band numerically such that both valence
bands start at the same energy, to mimic the degeneracy of the light and heavy bands of GaAs at the � point.
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Figure 9. TC versus p at different ratios J1/W1, obtained using DMFT. The parameters x , W1, W2,
and J1 are as in figure 7. The inset shows the low-temperature interacting DOS (from [49]).

own contribution to TC. The curves with W2/W1 = 0.35 and 0.5 correspond to decoupled IBs,
while those with W2/W1 = 0.625 and 0.75 correspond to partially overlapping bands. Again,
TC is maximized at all fillings when the bands fully overlap (W2/W1 = 1), in good agreement
with [50]. Although W2/W1 = 1 is not realistic in DMSs, we come to the conclusion that
Mn-doped materials with a relatively small heavy–light mass ratio will favour a higher TC.

Now it is established that TC is maximal for all p when J2/J1 = 1 and W2/W1 = 1, let
us analyse TC versus p when J1/W1 varies. The results for TC, and total interacting DOS, are
in figure 9. At small coupling J1/W1 � 0.33, TC is small, flat, and much extended on the p
axis, results qualitatively similar to those found for one band [54]. However, at intermediate
coupling, TC is non-zero in the range from p = 0 to p = 2x , adopting a parabolic form with the
maximum at p ∼= x , in contrast with the one-band model which gives a null TC when p ∼= x .
The explanation is straightforward: at p = x in the one-band model the IB is fully occupied,
leading to a vanishing TC, but for the same p in the two-band model both bands are half filled,
which ultimately leads to the highest value for TC.

Concluding, the critical temperature TC is maximized at intermediate couplings and for
all carrier densities p when J1/J2 = 1 and W1/W2 = 1. The maximum TC is obtained at
p ∼= x , in contrast with the one-band model which shows a vanishing TC at the same doping.
In addition, TC at filling p ∼= x/2 in the one-band case is smaller than with two bands by a
factor ∼2. In view of the simplicity of the main results, it is clear that adding an extra band to
the calculations will only lead to a further increase in TC when all the IBs overlap.

The approach described here is also quantitative. In fact, using realistic mean values
specific to GaAs such as p = 0.005, a bandwidth ∼10 eV (t1 ≈ 2.5 eV), t2 = (1/9)t1,
and assuming J1/t1 = 1 and J1 = J2, we obtain TC ≈ 175 K, i.e. within the experimental
range. While this agreement with experiment [48] may be accidental, the trends are reliable
and the result improves upon single-band estimations. Moreover, for optimal t2/t1 = 1 and
J1/t1 = 2, the TC raises to ∼340 K, even at small p = 0.005, setting the upper bound for
DMSs under a two-band model description using a cubic lattice.

Our model presents several simplifications. For example, the Coulomb attraction by
acceptors is not included, thereby neglecting the dominant energy of impurity states. The on-
site Coulomb repulsion term U

∑
i ni↑ni↓, and the nearest-neighbour one V

∑
〈i j〉 ni n j (where

ni = ni↑ + ni↓), are not accounted for in the Hamiltonian (2). While the value of TC is clearly
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affected by the Coulomb interactions, our model is still able to capture the main qualitative
trends since the value of V , for instance, is comparable with the hopping and smaller than the
coupling. On the other hand, the influence on TC of the nearest-neighbour Coulomb repulsion
may be suppressed by the exchange effect among bands that is expected to induce a boost of
TC once the off-diagonal hopping terms are accounted for.

5. Conclusions

The study presented in this brief review paper has covered several materials. In all of them, the
effect of strong electronic correlations is important. For instance:

(i) Electron–electron and electron–phonon correlations play a crucial role in transport and
other properties of nanostructures, as explained in section 2. Many of the observed effects
usually occur only in these nanoscopic structures and not in the bulk. We have discussed new
techniques, with particular emphasis on numerical methods, and have presented various results
that can be obtained with these methods.

(ii) In section 3, a recent Monte Carlo study of the resistivity in a one-orbital spin-fermion
(or double-exchange) model for manganites was briefly reviewed. A study of a two-orbital
model for manganites has also been carried out (not discussed here but for details the reader
can consult [38]). The overall conclusion is that its behavior is similar to that of the one-orbital
model. Since these results are themselves also similar to experiments, our effort and those of
other groups provide evidence that the theoretical studies that have focused on the regime of
competition between a metal and an insulator are on the right track towards a full explanation
of the CMR phenomenon. Both with one and two orbitals, quenched disorder is important
in enlarging the magnitude of the effects and broadening its range in parameter space, thus
avoiding the fine tuning of couplings needed in the clean limit.

The results reviewed in section 3 described mainly ferromagnetic phases both metallic
and insulating. An area of study left for near future research is the important situation of
non-ferromagnetic insulating phases competing with the ferromagnetic metallic regime. In
fact, there has been some results concerning the effect of disorder on the insulating phases of
manganites [60]. But more work is needed to address the effect of the superexchange coupling
on the metal to insulator transition and on the formation of charge-ordered states.

(iii) Finally, the models and methods presented in section 4 can be used to search for diluted
magnetic semiconductors with even higher TC than currently known. Our results suggest that
semiconductors with the heavy-to-light-hole mass ratio the closest to 1, such as AlAs, could
have the highest TC if the couplings J could be tuned to its optimal value. The present effort
paves the way toward future non-perturbative studies of DMS models using realistic zinc blende
lattices, and points towards procedures to a further increase of the Curie temperature.

Overall, it can be concluded that the study of strongly correlated electronic systems
continues providing interesting results, surprises, and soon may develop into an area of
investigations with potential for real applications. Research in this field should continue to
be strongly pursued by the condensed matter community.
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